

Tetrahedron Letters 43 (2002) 4829-4832

Alkylation of 4-substituted 1-acetoxy-2-cyclopentenes by using copper reagents derived from alkylmagnesium halides and copper(I) cyanide

Yuichi Kobayashi,* Michiko Ito and Junji Igarashi

Department of Biomolecular Engineering, *Tokyo Institute of Technology*, 4259 *Nagatsuta*-*cho*, *Midori*-*ku*, *Yokohama* 226-8501, *Japan*

Received 15 March 2002; revised 7 May 2002; accepted 10 May 2002

Abstract—Alkylation of the acetates derived from 4-phenyl- and 4-butyl-2-cyclopenten-1-ols **2** was investigated with copper reagents derived from *n*-BuMgX (X = Cl, Br) and CuCN in 2:1 and 1:1 ratios in THF and in Et₂O. *cis* 1,4-Isomers **4a**,**b** (R = Ph, *n*-Bu) were produced regioselectively from the corresponding *trans* acetates **3a**,**b** with the reagent in a 2:1 ratio of BuMgCl and CuCN in THF, while the BuMgBr-based reagents of 2:1 and 1:1 ratios in Et₂O furnished *cis* 3,4-isomers **5a**,**b**. A similar tendency was obtained with *cis* acetates **6a**,**b** (R = Ph, *n*-Bu). © 2002 Elsevier Science Ltd. All rights reserved.

Installation of carbon nucleophiles on the cyclopentane (or -ene) ring is an important step for synthesis of cyclopentanoids. Recently, we have published arylation^{1a} and alkenylation^{1b} of monoacetate 1 using borates and nickel catalysis, and later, alkylation² of 1 using copper reagents derived from alkylmagnesium halides and copper (I) salts (Scheme 1, Eq. (1)). The

previous work

present work

$$
\text{AccO} \xrightarrow{\text{1} \text{A}} \xrightarrow{\text{1} \text{B}} \xrightarrow{\text{BuMgX}} \text{Bu} \xrightarrow{\text{Bu} \text{U}} \xrightarrow{\text{1} \text{A}} \text{or} \xrightarrow{\text{1} \text{A}} \xrightarrow{\text{1} \text{B}} \text{g} \text{Q}
$$
\n
$$
\text{AccO} \xleftarrow{\text{1} \text{A}} \xrightarrow{\text{2} \text{A}} \text{BuMgX} \xrightarrow{\text{BuMgX}} \text{Bu} \xrightarrow{\text{2} \text{A}} \text{or} \xrightarrow{\text{2} \text{A}} \xrightarrow{\text{3} \text{B}} \text{g} \text{Q}
$$
\n
$$
\text{G} \xrightarrow{\text{3} \text{B}} \text{Bu}
$$

Scheme 1. Previous and present works. note: R for **2**–**8**: **a**, Ph; **b**, *n*-Bu.

allylic alcohol moiety on the ring of these reaction products **2** is the reaction site for installation of a second carbon nucleophile by allylation, and thence it is practically worthwhile to find reagents which furnish high regio- and stereoselectivities as well as efficient reactivity in the allylation of easily preparable **2**. However, to the best of our knowledge, this sort of reaction was little studied even with related compounds. We investigated alkylation of *trans* and *cis* acetates **3** and **6** derived from alcohols **2** with the reagents prepared from butylmagnesium halides and CuCN, the result of which is presented in this letter. In addition, we applied the reaction to synthesis of dihydromultifidene.³

Standard acetylation of alcohols $2a$ $(R = Ph)$ and $2b$ $(R = n - Bu)$ with $Ac₂O$ and pyridine afforded *trans* acetates **3a** and **3b** in 91 and 99% yields, respectively, while the Mitsunobu reaction⁴ (AcOH, DEAD, PPh₃) at −78°C in toluene furnished *cis* acetates **6a** and **6b** with >99% diastereoselectivity in 90 and 84% yields, respectively.

On the basis of the previous results that the reactivity and regioselectivity in reaction of **1** are highly controlled by the ratio of RMgX/CuCN and the solvent (THF, Et_2O),⁵ three reagents (each 3 equiv.) consisting of different compositions of BuMgCl and CuCN in THF were submitted to the reaction with *trans* acetate **3a** $(R = Ph)$ (Table 1, entries 1–3). The lower order (LO)⁶ reagent (entry 1) was less reactive, producing *cis* 3,4-isomer **5a** only in 18% yield. On the other hand, the

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00915-2

Keywords: allylic coupling reaction; copper reagents; Grignard reagents; dihydromultifidene.

^{*} Corresponding author. Tel.: +81-45-924-5789; fax: +81-45-924-5789; e-mail: ykobayas@bio.titech.ac.jp

Table 1. Butylation of *trans* acetates **3a** and **3b**

Entry	Acetate	Reagent ^a	Solvent	Temp. $(^{\circ}C)$	Time (h)	Major product	Combined yield ^{b,c}	Ratio of 4.5 ^d	Other compds. $(\%)$	
									Acetate ^e	Alcoholf
1	3a	BuCu(CN)(MgCl)	THF	$\mathbf{0}$	5	5a	18	1: > 99	90	
2	3a	$Bu_2Cu(CN)(MgCl)_2$	THF	-18	5	4a	82 (71)	83:17	$\overline{}$	13
3	3a	BuMgCl, CuCN $(cat.)^g$	THF	-18	8	4a	19	87:13	29	52
4	3a	BuCu(CN)(MgCl)	Et ₂ O	$\bf{0}$	10	5a	74	1: > 99	26	
5	3a	$Bu_2Cu(CN)(MgCl)2$	Et ₂ O	-18	5	5a	90	7:93	$\overline{}$	15
6	3a	BuCu(CN)(MgBr)	THF	$\mathbf{0}$	5	5a	20	1: > 99	80	
7	3a	$Bu_2Cu(CN)(MgBr)_2$	THF	-18	5	5a	52	47:53	13	23
8	3a	BuCu(CN)(MgBr)	Et ₂ O	$\bf{0}$	5	5a	97 (91)	1: > 99	$\overline{}$	
9	3a	$Bu_2Cu(CN)(MgBr)_2$	Et ₂ O	-18	5	5a	100(94)	1: > 99	$\overline{}$	
10	3 _b	BuCu(CN)(MgCl)	THF	$\mathbf{0}$		5 _b	50	1: > 99	49	
11	3 _b	Bu, Cu(CN)(MgCl),	THF	-18	5	4 _b	84	91:9	$\overline{}$	2
12	3 _b	BuMgCl, CuCN $(cat.)^g$	THF	-18	5	4 _b	42	91:9		54
13	3 _b	BuCu(CN)(MgBr)	Et ₂ O	$\boldsymbol{0}$	5	5b	99 (85)	2:98		
14	3 _b	$Bu_2Cu(CN)(MgBr)_2$	Et ₂ O	-18	5	5 _b	93 (73)	2:98		

^a Three equiv. of the reagents were used.

^b Determined by ¹H NMR with pyridine as a standard.

^c Isolated yields are given in parentheses.

^d Determined by ¹H NMR spectroscopy.

^e **3a** for entries 1, 3, 4, 6, and 7; **3b** for entries 10 and 12.

^f **2a** for entries 2, 3, and 5–7; **2b** for entries 11 and 12.

 g_{10} mol%

higher order (HO)⁶ and CuCN-catalyzed reagents produced *cis* 1,4-isomer **4a** though alcohol **2a** and/or acetate **3a** were co-produced with **4a**. In entry 2, the isolated yield was 71%.7 These results are beyond our prediction.8 Since the yield of 3,4-isomer **5a** obtained in THF was quite low (entry 1), the LO and HO reagents were re-examined in $Et₂O$ (entries 4 and 5). Both reagents furnished **5a** with high product selectivity; of the two reagents, higher reactivity and higher yield were obtained with the HO reagent (entry 5). We also checked the BuMgBr-based reagents in THF and in $Et₂O$ (entries 6–9). Among them, the best results were provided with Et₂O (entries 8 and 9), giving 5a in 91 and 94% isolated yields, respectively.⁹

elucidated for the butylation of $3a (R = Ph)$ are applicable to that of **3b** $(R=n-Bu)$, the conditions given in entries 1–9 were investigated for butylation of **3b**. Similar tendencies for the reactivity and the regioselectivity were observed through the experiments; some of the results are presented in entries 10–14. The regioisomers **4b** and **5b** were best synthesized in entry 11 for **4b** and in entries 13, 14 for **5b**, respectively.

Next, butylation of *cis* acetates $6a$ $(R = Ph)$ and $6b$ $(R = Bu)$ was investigated using the LO and HO reagents. Among the eight experiments with **6a** (combination of LO or HO, $X = Cl$ or Br, and THF or Et₂O), the BuMgCl-based HO reagent in THF and the $BuMgBr-based LO reagent in Et₂O provided the best$ results producing *trans* **7a** and **8a**, respectively (Table 2,

Although it was conceived that the best conditions

Table 2. Butylation of *cis* acetates **6a** and **6b**

Entry	Acetate	Reagent ^a	Solvent	Temp. $(^{\circ}C)$	Time (h)	Major product	Combined yield ^b	Ratio of $7:8^{\circ}$	Other compds. $(\%)$	
									Acetate ^d	Alcohol ^e
	6a	$Bu_2Cu(CN)(MgCl)_2$	THF	-18		7a	96	67:33	-	
2	6a	BuCu(CN)(MgBr)	Et ₂ O	$\mathbf{0}$		8a	$100 (90)^f$	3:97	-	\sim
\mathfrak{Z}	6b	$Bu2Cu(CN)(MgCl)2$	THF	-18		7b	96	55:45	-	
4	6 _b	BuCu(CN)(MgBr)	Et ₂ O	$\boldsymbol{0}$		8b	100	5:95	$\overline{}$	\sim

^a Three equiv. of the reagents were used.

^b Determined by ¹H NMR with pyridine as a standard.

^c Determined by ¹H NMR spectroscopy.

^d Acetates **6a** and **6b** were not recovered in entries 1–4.

^e **9a** for entry 1. In other entries, the corresponding alcohol **9a** or **9b** were not detected.

f Isolated yield.

Scheme 2. Racemic synthesis of dihydromultifidene.

entries 1 and 2), though the regioselectivity for the former was moderate. Regarding *cis* acetate **6b**, *trans* 1,4-isomer **7b** was obtained with the HO reagent, but with a poor regioselectivity (entry 3), while 3,4-isomer **8b** was produced in high ratio and yield (entry 4).

$$
HOII
$$
\n9a: R = Ph
\n9b: R = Bu

The stereochemistry of the 1,4-regioisomers **4a**,**b** and **7a**,**b** was easily determined by ¹ H NMR spectroscopy: in general, differences in chemical shifts between the geminal protons at C(5) of *cis* and *trans* 1,4-disubstituted 2-cyclopentenes are >1 and < 0.3 ppm, respectively.¹⁰ In the spectra of **4a** and **4b**, the differences in question were 1.3 and 1 ppm, respectively, thus supporting the *cis* stereochemistry for them, while those measured for **7a** and **7b** were 0.1 and $0¹¹$ ppm, respectively, by which the *trans* stereochemistry was assigned for them (**7a** and **7b**). These stereochemical outcomes strongly suggest the inversion and the *anti* S_N^2 reactions to be involved depending on the ratio of BuMgX/ CuCN and the solvent, the same reaction mode as that observed for the alkylation of monoacetate **1**. ² Furthermore, with the ¹H NMR spectra of these products, no contamination of the corresponding stereoisomers in the entries of Tables 1 and 2 was confirmed. Regarding 3,4-isomers, the *cis* stereochemistry of **5a** was determined by an NOE experiment, 12 while stereochemistries of the other products **5b**, **8a**, and **8b** were assigned by analogy to the above assignments.

With the establishment of the product prediction in the reaction of acetates **3a**,**b** and **6a**,**b**, application in organic synthesis has now become quite feasible. As an example, synthesis of alcohol **13** was achieved as summarized in Scheme 2. This alcohol is the key intermediate3b for synthesis of dihydromultifidene (**14**), which is a pheromone of the brown algae, *Dictyopteris acrostichoides*. 13

According to the literature, 14 racemic acetate 1 was converted into alcohol **10**, which upon Mitsunobu inversion with AcOH furnished **11** stereoselectively in 86% yield. Installation of the Bu group was carried out

using the LO reagent in $Et₂O$ (the conditions of entry 8) in Table 1), which required lower temperature of −45°C to obtain a high diastereomeric ratio (91:1) of **12** and an isomer.15,16 The acidic proton at the malonate part did not quench the reagent. Demethoxycarbonylation of **12** followed by reduction afforded alcohol **13** in good yield. Finally, **13** was converted into **14** according to the literature procedure.^{3b} The ¹H NMR spectra of synthetic 14 was consistent with the data reported.^{3c,17}

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- 1. (a) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. *Tetrahedron Lett*. **1998**, 39, 597–600; (b) Usmani, S. B.; Takahisa, E.; Kobayashi, Y. *Tetrahedron Lett*. **1998**, 39, 601–604.
- 2. Ito, M.; Matsuumi, M.; Murugesh, M. G.; Kobayashi, Y. *J*. *Org*. *Chem*. **2001**, 66, 5881–5889.
- 3. Previous syntheses: (a) Boland, W.; Mertes, K. *Helv*. *Chim*. *Acta* **1984**, 67, 616–624; (b) Kramp, P.; Helmchen, G.; Holmes, A. B. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1993**, 551–552; (c) Lebreton, J.; Alphand, V.; Furstoss, R. *Tetrahedron* **1997**, 53, 145–160.
- 4. Mitsunobu, O. *Synthesis* **1981**, 1–28.
- 5. For information in detail, see Table 1 of Ref. 2.
- 6. Although the structures of copper reagents derived from butylmagnesium halides and Cu(I) salt are not determined, the terms 'LO, HO, and CuCN-catalyzed reagents' are conveniently used to indicate the ratios of 1:1, 2:1, and 10:1 for the reagents derived from BuMgX and CuCN. For the original LO and HO reagents derived from RLi and CuCN, see the following: Liptshutz, B. H. In *Organometallics in Synthesis*; Schlosser, M., Ed.; Wiley: New York, 1994; Chapter 4, p. 283.
- 7. To a slurry of CuCN (65 mg, 0.73 mmol) in THF (1 mL) was added a solution of BuMgCl (1.0 mL, 1.50 M in THF, 1.50 mmol) at −18°C. After 20 min of stirring,

acetate **3a** (50 mg, 0.25 mmol) in THF (0.2 mL) was injected. The reaction was carried out at −18°C for 5 h, and quenched by addition of saturated $NH₄Cl$ and 28% $NH₃$. The resulting mixture was extracted with Et₂O three times, and the crude product was purified by chromatography to afford 71% yield (36 mg) of **4a** and **5a** in a 83:17 ratio: ¹H NMR of **4a** (300 MHz, CDCl₃) δ 0.89 (t, *J*=7 Hz, 3H), 1.1–1.4 (m, 7H), 2.58 (dt, *J*=15, 8 Hz, 1H), 2.71 (br s, 1H), 3.80–3.91 (m, 1H), 5.72 (dt, *J*=5, 2 Hz, 1H), 5.87 (dt, *J*=5, 2 Hz, 1H), 7.15–7.30 (m, 5H).

- 8. We had expected efficient (yield and regioselectivity) production of **5a** from entry 1 and **4a** from entries 2 and 3 on the basis of the previous results.²
- 9. According to the procedure described in Ref. 7, butylation of **3a** (50 mg, 0.25 mmol) was performed with BuMgBr $(0.82 \text{ mL}, 0.92 \text{ M} \text{ in } E_t$, 0.75 mmol), CuCN (81 mg, 0.90 mmol), and Et₂O (1.2 mL) at 0^oC for 5 h to afford **5a** in 91% yield (46 mg): ¹H NMR (300 MHz, CDCl₃) δ 0.75 (t, J=7 Hz, 3H), 0.82–0.99 (m, 2H), 0.99–1.26 (m, 4H), 2.65 (dm, *J*=8 Hz, 2H), 2.76–2.88 (m, 1H), 3.55 (q, *J*=8 Hz, 1H), 5.88 (s, 2H), 7.15–7.30 (m, 5H).
- 10. Trost, B. M.; Verhoeven, T. R. *J*. *Am*. *Chem*. *Soc*. **1980**, 102, 4730–4743.
- 11. Due to the existence of the C_2 symmetry axis.
- 12. NOE experiment of **5a**:

- 13. Wirth, D.; Fischer-Lui, I.; Boland, W.; Icheln, D.; Runge, T.; König, W. A.; Phillips, J.; Clayton, M. *Helv. Chim*. *Acta* **1992**, ⁷⁵, 734–744.
- 14. Deardorff, D. R.; Linde, R. G., II; Martin, A. M.; Shulman, M. J. *J*. *Org*. *Chem*. **1989**, 54, 2759–2762.
- 15. Probably the regioisomer. However, the full structure was not characterized.
- 16. Reaction of acetate **i** derived from 10 (Ac₂O, pyridine) with the LO reagent efficiently afforded isomer **ii**, with the supposed *trans* stereochemistry; the ¹H NMR spectrum of **ii** is different from that of **12**.

17. This result and that of Ref. 16 indirectly support the stereochemical outcome for the 3,4-isomers synthesized in Tables 1 and 2.